
  

Abstract — This work shows one implementation of 

polynomial time algorithms in centralized linear network 

coding. Used programming language is Python, language 

which can show simplicity and efficiency of such algorithms. 

Program was tested with random graphs and some user 

defined graphs.   

 

Index terms — network coding     

I. INTRODUCTION 

ETWORK CODING is concept about code construction 

for network flows, that is next step from classical 

«receive and send» routing. It allows intermediate nodes in 

network to combine information they receive, i.e. to merge 

input data into one symbol which will fulfill requirements 

of node neighborhoods within one step. In past several 

years this idea became developed in strong theory [1] [2].  

At beginning, it is important to show tology where 

Network coding can be profitable. Baochun Li [3] has 

made interesting video presentation about «How helpful is 

Network Coding» where he had shown several limitations 

on which must be worked in future (synchrony, delay, CPU 

usage). He explained that Coding Advantage CA (the ratio 

of the best throughput with network coding over that 

without coding) is only one in unicast and broadcast 

sessions in directed networks (no coding advantage). In 

multicast sessions CA is upper bounded with two, hence, 

network coding is useful only in multicast sessions and 

only two times better than without coding. 

Network coding brings good news in problems of 

maximizing the capacity in multicast sessions, which is, 

without coding, at least hard as the minimum directed 

Steiner tree problem [4], thus it is NP-hard to even 

approximate the maximum rate. With network coding, 

maximum rate is ease to calculate as minimum of mincuts 

to all sinks and following algorithm gives solutions in 

polynomial time.  

II. POLYNOMIAL ALGORITHMS 

A. Related Work 

Ahlswede et al. [5] introduce a term Network coding as 

necessary tool for Butterfly problem (where edges contain 

more than one flow). They say that, as field size 

approaches infinity it is possible to maximizate throughput 
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to h (h is min of mincuts to all sinks). Li et al. [6] show 

that field size can be finite for linear coding. Rasala-

Lehman and Lehman [7] give lower bounds on the 

minimum alphabet size and proved that finding the 

smallest size is NP-hard. Koetter and Medard [8] show that 

|F|=O(|T| ·h) (|T| is number of sinks) is enough for the field 

size, and Ho et al. [9] give the similar result using 

randomized approach. They give the probability that 

random linear network code achieves mincut rate and it 

tends to one as ratio of number of sinks and field size 

|T|/|F| tends to zero. They also noted that it could be 

realized in distributed scenario. 

On the other side Jaggi et al. [10] give polynomial time 

algorithms with field size O(|T|) for centralized network 

code construction which are used in this work. 

B. Algorithm description 

Consider unit capacity, multiedges directed graph 

G(V,E). (nonunit capacity edges are replaced with multi 

unit capacity edges). This centralized algorithm has two 

parts. First, flows are determined for each sink Tt ∈ and 

edges without flows are discarded (notice that flows for the 

same sink doesn’t have mutual edges). Mincut h is 

evaluated as min of number of flows for each sink. All 

flows above first h flows are also discarded. Second part of 

algorithm is to calculate edge vectors, which are used to 

represent data over it.  

Example: information data
→

x is h dimensional vector 

over some field Fxxxxx ih ∈=
→

],...,[ 21
. Field size is 

2
m
 so data can be viewed as bits. Edge data y on edge e is 

symbol from F obtained from scalar product of 

information data and h dimensional vector (also called 

global vector) on edge e: ],...,[ ,2,1, hcccc bbbb =
→

 

hchccc bxbxbxbxy ,2,21,1 ... +++=⋅=
→→

  (1) 

Vector on edge e originating at some vertex is linear 

combination of input vectors (that are vectors on edges 

ending at that vertex and having mutual flows with e).  

 

 
Fig. 1 Calculating edge vector e 
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 On Fig. 1 (Ti , j) is label of j-th flow to Ti sink. In this 

example, output edge contains flows to (T1,0), (T5,4) and 

(T3,3) therefore linear combination take into consideration 

only first and third input edge. (T1,1)  flow on second edge 

doesn’t go through edge e. 

Size of linear combination [ ],..., βα  is number of input 

edges having common flows. Linear combination must 

ensure that sinks can resolve h  symbols from their inputs 

(as each flow carry one dimension from the total h 

dimensions, linear calculation must not suspend any flow).  

In other words, if we put edge vectors of h flows to 

certain sink t at columns in (h x h) matrix Bt, algorithm 

invariant is that Bt is always invertible and therefore 

information data could be retrieved. In (2) 
→

x  is 

information vector and 
→

y  is vector of symbols on c1, c2, 

...ch edges (current edges on flows). 

th
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 (2)

 At sinks information vector can be retrieved with 

formula tttt AyByx ⋅=⋅=
→

−
→→

1
 where At is inverse matrix. 

Note its rows as vectors 
→

ia . Vector 
→

ia  is perpendicular 

on space B/{bi} because of (3) (we will use this 

extensively for testing if new vector is appropriate):  









=

≠
=⋅⇒=⋅

→→

jiif

jiif
baIBA ji

1

0
  (3) 

In algorithm, usual matrix inversion is avoided using 

Sherman-Morrison formula [11]. It helps because in each 

step we are changing only the one column in Bt (not the 

whole matrix) for example i-th column becomes 

b=[b1,b2,...bh]. It is the same as we add to B some matrix 

λ which has only i-th column different from zero and 

equal -bci + b = [-bci,1+b1, -bci,2+b2 ... -bci,h+bh]. Main 

formula for updating inverse matrix is derived from the 

following equation (A' prim means new inversion matrix).  
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 Those components are simple to calculate. 
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Finally we have: 
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Update formula for the inverse matrix A can be derived 

from the last equation (recall that we were updating i-th 

column of the matrix B with vector b): 

 

( )baaaa

baaa

jijj

iii

⋅−=









⋅=

→→→

→→→→

''

/'
      (4) 

 

The main step in algorithm is to chose appropriate linear 

combination (see Fig. 1) which will assure h 

dimensionality of matrix B. To test if a new vector b on i-

th position is a good one, we are performing only one 

calculation: multiplying new vector b with a perpendicular 

on B/{bi} (i.e. vector ia ) and if we got a number different 

than zero, we had chosen right b. 
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Randomized algorithm, where coefficients in linear 

combination are random numbers from finite field, has 

expected running time ( )2
hTEO = . Most of the 

operations are spent for updating inverse vectors and they 

occupy multiplication of: |E| (iterate over all edges), |T| (at 

the most |T| flows), h (h is number of inverse vectors for 

every flow) and h (vector dimension = inner product 

complexity). Failure probability is |F|/|T| (here is used field 

size of TF 2≥ ). Deterministic algorithm is based on 

this reason: if there is n≤|F| pairs of non normal vectors 
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(bi,ai) (i.e. biai≠0) then there exists linear combination u of 

b1...bn such that uai≠0 (linear combination isn't normal to 

any ai). Algorithm steps are: u1=b1, 1≤i<n if uiai+1≠0 then 

ui+1=ui else ui+1=αui+bi+1 where α is from finite field except 

set{αk | αk = -(bi+1ak)/(uiak) 1≤k≤i}, it has running time 

O(|T|
2
h) (at most |T| pairs, h for calculating α and size of 

admissible α is at most |T|) Deterministic running time is 

( )( ) ( )( )ThhTEOhThTEO +=+
22

 and required 

field size is any TF ≥ For the source code see [12]. 

Each sink can reconstruct all h input symbols in ( )2hO . 

 

C. Python implementation 

Algorithm realization is done with Python interpreter 

language, which is the most suitable language for such 

testing. Whole implementation could be written on one 

page as it is in this work in APPENDIX. That Python code 

with detailed installation instructions and examples can be 

found at [12]. Program imports several modules: 

NetworkX for graph operations, Numpy for vector 

operations, Pydot for drawing graphs and ffield for finite 

field operations.   

Program input is directed acyclic, multigraph (V,E). 

Multigraph can be defined in txt file dot format (edges and 

capacity) or chosen randomly. If there is non unit integer 

capacity between nodes example: c=3, it is replaced with c 

multi edges with unit capacity.  

Source node is node without any input edges (if graph 

doesn't contain only one such node, program exits) and 

sinks are nodes without output edges.  

Next step is to mark all flows to all sinks (example: for 

sink T0, there are three flows (T0,0), (T0,1), (T0,2)). 

Mincut h is min of number of flows to each sink. 

Remaining flows above first h are discarded and edges 

without flows are also discarded. Then, program inserts 

new h pseudo edges from pseudo node 's' to the source, 

with vectors (1,0,0,0,...), (0,1,0,0,0,...) ... (0,0,....0,1) (h 

vectors) respectively, and mark them as current edges for 

h flow, for all sinks. Initially perpendiculars are the same 

as vectors because it holds (see equation (3)). 
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Nodes are processed in topological order (it means that 

all input edges were processed before node is processing).  

When an edge e is processing, first are determined all 

vectors and perpendiculars on input edges having the same 

flows as e has (see Fig. 1). Note those vectors as 

temp_vectors and temp_perpendiculars, respectively. 

Label lin_comb is linear combination of vectors from 

temp_vectors with coefficients from finite field. field size 

is of form 2
m
 and  at least double of number of sinks. 

Scalar product (label multiplication) of vectors in 

temp_perpendiculars and lin_comb must be non zero. This 

ensure that new vector lin_comb have component at 

perpendicular on Bt without vector which lin_comb is 

replacing. Rest of algorithm is updating current_edges, 

vectors and perpendiculars. At the end, picture of the 

graph with edge flows and vectors, is created. 

D. Testing 

This program gives us ability to find centralized network 

code solution to any multicast session. Fig. 2 presents a 

solution of butterfly problem with double edges (mincut is 

therefore 4). In Fig. 3 is presented deterministic solution 

for random generated network (see [12] for details of 

generation steps). (h is 5, sinks are {8, 9}, field size is 2) 

 

 
 

Fig. 2 Butterfly network with double capacity edges 

 

 

 
Fig. 3 Random network with 10 nodes 

III. CONCLUSION 

This work shows simplicity of modern algorithms in 

network coding [10] and attracts young scholars to involve 

in this new exciting mixture field of information coding, 

graphs theory, routing etc. 

bi 

ai 
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APPENDIX 

Source code for randomized algorithm: 
import ffield #www.mit.edu/~emin/source_code/py_ecc/ffield.py 

import numpy #download from http://numpy.scipy.org/ 

import networkx # http://pypi.python.org/pypi/networkx/  

import math 

import random 

import pydot #http://code.google.com/p/pydot/ 

 

picture = pydot.Dot()  

graph = networkx.read_dot('dot.txt')   

graph.ban_selfloops() 

for h,t,c in graph.edges()[:] : 

    if c!={} and c != None:   

        capacity = int(c.pop('c')) 

        if capacity > 1:           

            for x in range(capacity-1):  

                graph.add_edge(h,t,{}) 

        elif capacity ==0:          

            graph.delete_edge(h,t,c) 

if graph.in_degree().count(0) > 1:   

    exit("ERROR: The Graph has more than one vertice with no input edges (the problem is 

more than one sources)!") 

elif graph.in_degree().count(0) < 1: 

    exit("ERROR: The Graph doesn't have any vertice with no input edges (the problem is that 

there is no source)!") 

source=graph.nodes()[graph.in_degree().index(0)]  

sinks=[graph.nodes()[i] for i,x in enumerate(graph.out_degree()) if x==0]  

 

new_graph = networkx.XDiGraph(multiedges=True) 

flows=dict(zip(sinks,[list() for dump in range(len(sinks))] ))   

for sink in sinks: 

    temp_graph=graph.copy()     

    flow = networkx.path.shortest_path(temp_graph,source,sink)     

    flow_number=-1    

    while flow:  

        flows[sink].append(flow)  

        flow_number +=1      

        temp_graph.delete_edges_from(zip(flow[:-1],flow[1:],[{}]*(len(flow)-1)))  

        for h,t in zip(flow[:-1],flow[1:]):  

            if new_graph.has_edge(h,t):  

               for temp in new_graph.get_edge(h,t):   

                   if set([x for x,dump in temp]).intersection([sink]) == set([]):     

                        temp.add((sink,flow_number))  

                        break 

               else:  

                    new_graph.add_edge(h,t,set([(sink,flow_number)]))    

            else:  

                new_graph.add_edge(h,t,set([(sink,flow_number)]))  

             

        flow = networkx.path.shortest_path(temp_graph,source,sink)  

 

mincut=min([len(x) for x in flows.values()])  

 

for sink in sinks: 

    while len(flows[sink]) > mincut:    

        flow_number= len(flows[sink]) -1 

        flow = flows[sink].pop()        

        for h,t in zip(flow[:-1],flow[1:]): 

            for temp in new_graph.get_edge(h,t): 

                if temp.intersection(set([(sink,flow_number)])) != set([]): 

                    temp.discard((sink,flow_number)) 

                    if len(temp) == 0:             

                        new_graph.delete_edge(h,t,set())    

                    break 

graph=new_graph  

 

field=ffield.FField(int(math.ceil(math.log(len(sinks),2))))  

vectors=dict(zip([x for x in sinks],[[numpy.array([ffield.FElement(field,0)]*i+ 

[ffield.FElement(field,1)]+[ffield.FElement(field,0)]*(mincut-i-1)) for i in range(mincut)] for dump 

in range(len(sinks))])) 

 

for i in range(mincut):            

    graph.add_edge('s',source,set([(t,i) for t in sinks]))    

    picture.add_edge(pydot.Edge('s',str(source),label="b=["+'0'*i+'1'+'0'*(mincut-i-1)+"]"))   

                

current_edges = dict(zip(sinks,[[('s',source)]*mincut for dump in range(len(sinks))]))  

perpendiculars=dict(zip([x for x in sinks], [[numpy.array([ffield.FElement(field,0)]*i+ 

[ffield.FElement(field,1)]+[ffield.FElement(field,0)]*(mincut-i-1)) for i in range(mincut)] for dump 

in range(len(sinks))])) 

for vertice in networkx.topological_sort(graph)[1:-len(sinks)]:  

    label_vertice="" 

    for edge in graph.out_edges_iter(vertice): 

        temp_perpendiculars = []   

        index_temp_perpendiculars = []  

        temp_vectors = []    

        temp_orders = []     

        for edge_order,input_edge in enumerate(graph.in_edges(vertice)):   

            same_flows = set.intersection(input_edge[2],edge[2]) 

            if same_flows: 

                for t,i in same_flows :       

                    temp_perpendiculars.append(perpendiculars[t][i]) 

                    index_temp_perpendiculars.append((t,i)) 

                temp_vectors.append(vectors[t][i]) 

                temp_orders.append(edge_order) 

 

        got_linear_combination = False  

        while not got_linear_combination:   

            lin_comb = numpy.array([ffield.FElement(field,0)]*mincut) 

            random_vector = [ffield.FElement(field,random.randint(0,pow(2,field.n)-1)) for dump 

in range(len(temp_orders))] 

            for v in [x*y for x,y in zip(temp_vectors, random_vector)]: 

                lin_comb += v    

   

            multiplication = temp_perpendiculars * lin_comb 

            for i in multiplication: 

                if i.sum().f == 0: 

                    print "random_vector", random_vector,"lin_comb", lin_comb," have sum=0" 

                    break                                      

            else: 

                print  "global vector on edge",edge[0],'-',edge[1],"is",lin_comb                   

                got_linear_combination = True 

                for t,i in edge[2]: 

                    vectors[t][i]=lin_comb  

                    current_edges[t][i] = (vertice,edge[1])  

                    index=index_temp_perpendiculars.index((t,i))  

                    perpendiculars[t][i] = temp_perpendiculars[index] * 

ffield.FElement(field,field.Inverse((temp_perpendiculars[index]*lin_comb).sum().f))                  

                    for x,temp in enumerate(perpendiculars[t][:]): 

                        if x==i: 

                            continue 

                        temp += perpendiculars[t][i] * (lin_comb*temp).sum()  

                    label="" 

                lin_comb_coef=zip(temp_orders, random_vector) 

                lin_comb_coef.append(('x',0)) 

                lin_comb_coef.reverse() 

                position,coeficient = lin_comb_coef.pop() 

                for i in range(graph.in_degree(vertice)): 

                    if position==i: 

                        label+=str(coeficient.f)+"|"                     

                        position,coeficient = lin_comb_coef.pop() 

                    else: 

                        label+="0|" 

                label="{"+label[:-1]+"}"                

                label_vertice +=label + "|" 

                picture.add_edge(pydot.Edge(src=str(vertice),dst=str(edge[1]),label="b="+str([x.f 

for x in lin_comb]) + "\\nT="+ str(edge[2])[3:-1] )) 

    if label_vertice != '': 

        picture.add_node(pydot.Node(str(vertice),label=label_vertice[:-1],shape='record')) 

                

picture.write_jpg('dot.jpg') 
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