

Abstract — This work shows one implementation of

polynomial time algorithms in centralized linear network

coding. Used programming language is Python, language

which can show simplicity and efficiency of such algorithms.

Program was tested with random graphs and some user

defined graphs.

Index terms — network coding

I. INTRODUCTION

ETWORK CODING is concept about code construction

for network flows, that is next step from classical

«receive and send» routing. It allows intermediate nodes in

network to combine information they receive, i.e. to merge

input data into one symbol which will fulfill requirements

of node neighborhoods within one step. In past several

years this idea became developed in strong theory [1] [2].

At beginning, it is important to show tology where

Network coding can be profitable. Baochun Li [3] has

made interesting video presentation about «How helpful is

Network Coding» where he had shown several limitations

on which must be worked in future (synchrony, delay, CPU

usage). He explained that Coding Advantage CA (the ratio

of the best throughput with network coding over that

without coding) is only one in unicast and broadcast

sessions in directed networks (no coding advantage). In

multicast sessions CA is upper bounded with two, hence,

network coding is useful only in multicast sessions and

only two times better than without coding.

Network coding brings good news in problems of

maximizing the capacity in multicast sessions, which is,

without coding, at least hard as the minimum directed

Steiner tree problem [4], thus it is NP-hard to even

approximate the maximum rate. With network coding,

maximum rate is ease to calculate as minimum of mincuts

to all sinks and following algorithm gives solutions in

polynomial time.

II. POLYNOMIAL ALGORITHMS

A. Related Work

Ahlswede et al. [5] introduce a term Network coding as

necessary tool for Butterfly problem (where edges contain

more than one flow). They say that, as field size

approaches infinity it is possible to maximizate throughput

Dušan Orlović, Faculty of Technical Science at University of Novi

Sad. Advisors: dr Vukobratovic Dejan, dr Senk Vojin. Fellowship holder

of Ministry of Science in Republic Serbia (email: orlovic@uns.ns.ac.yu)

to h (h is min of mincuts to all sinks). Li et al. [6] show

that field size can be finite for linear coding. Rasala-

Lehman and Lehman [7] give lower bounds on the

minimum alphabet size and proved that finding the

smallest size is NP-hard. Koetter and Medard [8] show that

|F|=O(|T| ·h) (|T| is number of sinks) is enough for the field

size, and Ho et al. [9] give the similar result using

randomized approach. They give the probability that

random linear network code achieves mincut rate and it

tends to one as ratio of number of sinks and field size

|T|/|F| tends to zero. They also noted that it could be

realized in distributed scenario.

On the other side Jaggi et al. [10] give polynomial time

algorithms with field size O(|T|) for centralized network

code construction which are used in this work.

B. Algorithm description

Consider unit capacity, multiedges directed graph

G(V,E). (nonunit capacity edges are replaced with multi

unit capacity edges). This centralized algorithm has two

parts. First, flows are determined for each sink Tt ∈ and

edges without flows are discarded (notice that flows for the

same sink doesn’t have mutual edges). Mincut h is

evaluated as min of number of flows for each sink. All

flows above first h flows are also discarded. Second part of

algorithm is to calculate edge vectors, which are used to

represent data over it.

Example: information data
→

x is h dimensional vector

over some field Fxxxxx ih ∈=
→

],...,[21
. Field size is

2
m
 so data can be viewed as bits. Edge data y on edge e is

symbol from F obtained from scalar product of

information data and h dimensional vector (also called

global vector) on edge e:],...,[,2,1, hcccc bbbb =
→

hchccc bxbxbxbxy ,2,21,1 ... +++=⋅=
→→

 (1)

Vector on edge e originating at some vertex is linear

combination of input vectors (that are vectors on edges

ending at that vertex and having mutual flows with e).

Fig. 1 Calculating edge vector e

Implementation of Polynomial Time Algorithms

for Network Coding – with Python language

Orlovic Dusan, PhD student, University of Novi Sad

N

(T1,0)

(T3,2)
(T1,1)

(T5,4)

(T3,3) 















1

1

1

c

b

a

















2

2

2

c

b

a

















3

3

3

c

b

a

















+

+

+

31

31

31

cc

bb

aa

βα

βα

βα (T1,0)

(T5,4)

(T3,3)

134

 On Fig. 1 (Ti , j) is label of j-th flow to Ti sink. In this

example, output edge contains flows to (T1,0), (T5,4) and

(T3,3) therefore linear combination take into consideration

only first and third input edge. (T1,1) flow on second edge

doesn’t go through edge e.

Size of linear combination [],..., βα is number of input

edges having common flows. Linear combination must

ensure that sinks can resolve h symbols from their inputs

(as each flow carry one dimension from the total h

dimensions, linear calculation must not suspend any flow).

In other words, if we put edge vectors of h flows to

certain sink t at columns in (h x h) matrix Bt, algorithm

invariant is that Bt is always invertible and therefore

information data could be retrieved. In (2)
→

x is

information vector and
→

y is vector of symbols on c1, c2,

...ch edges (current edges on flows).

th

hchc

ic

ccc

ht yyy

bb

b

bbb

xxBx

h

hi →→

==

















⋅=⋅],..[],...[1

,,

,

1,1,1,

1

1

1

1

 (2)

 At sinks information vector can be retrieved with

formula tttt AyByx ⋅=⋅=
→

−
→→

1
 where At is inverse matrix.

Note its rows as vectors
→

ia . Vector
→

ia is perpendicular

on space B/{bi} because of (3) (we will use this

extensively for testing if new vector is appropriate):









=

≠
=⋅⇒=⋅

→→

jiif

jiif
baIBA ji

1

0
 (3)

In algorithm, usual matrix inversion is avoided using

Sherman-Morrison formula [11]. It helps because in each

step we are changing only the one column in Bt (not the

whole matrix) for example i-th column becomes

b=[b1,b2,...bh]. It is the same as we add to B some matrix

λ which has only i-th column different from zero and

equal -bci + b = [-bci,1+b1, -bci,2+b2 ... -bci,h+bh]. Main

formula for updating inverse matrix is derived from the

following equation (A' prim means new inversion matrix).

() ()() ()

()() A
A

A
AAAAA

AAAABBBA










+
−=−+−−=

−+−=+=+=
−−−

λ

λ
λλλλ

λλλλλ

1
1...11

...11
111'

 Those components are simple to calculate.





















−=































+−









+−









+−

=

















+−

+−

+−

















=

→→

→→

→→

→→→

→→→

→→→

00

010

00

00

00

00

00

00

00

...

...

...

1
)3(

1

,

,

11,

,1,

,1,

,11,1

ba

ba

ba

bba

bba

bba

bb

bb

bb

aa

aa

aa

A

h

i

cih

cii

ci

hhc

iic

c

hhh

hii

h

i

i

i

λ

()

()
→→

→→

−

→→

→→

→→

−

⋅=+

















⋅=





















=+

baA

ba

ba

ba

ba

A

i

i

h

i

λ

λ

1det

100

010

001

10

00

01

1

1

1

1

Finally we have:

()()





























⋅−⋅−⋅−

⋅−⋅−⋅−

=





















−

−

=+⋅−=

→→

→→

→→

→→

→→

→→

→→→→→→

→→

→→

→→

→→

→→

→→

→→→→

→→

→→→→

−

hi

i

h
hhi

i

h
hi

i

h
h

ihiiiii

hi

i

hi

i

i

i

ih

i

i

a

ba

ba
aa

ba

ba
aa

ba

ba
a

baabaabaa

a

ba

ba
aa

ba

ba
aa

ba

ba
a

A

baba

ba

baba

AAAA

,,2,2,1,1,

,2,1,

,
1

,12,
1

2,11,
1

1,1

1

1

...

.........

...

...

1...0

01......

......10

001

11' λλ

Update formula for the inverse matrix A can be derived

from the last equation (recall that we were updating i-th

column of the matrix B with vector b):

()baaaa

baaa

jijj

iii

⋅−=









⋅=

→→→

→→→→

''

/'
 (4)

The main step in algorithm is to chose appropriate linear

combination (see Fig. 1) which will assure h

dimensionality of matrix B. To test if a new vector b on i-

th position is a good one, we are performing only one

calculation: multiplying new vector b with a perpendicular

on B/{bi} (i.e. vector ia) and if we got a number different

than zero, we had chosen right b.

{ }







≠
=

⋅
→→

preservedisyensionalithhence

larperpendicuonprojectionhasbnew

againtrysobBondependsbnew

ab
i

i

dim

0

,/0

Randomized algorithm, where coefficients in linear

combination are random numbers from finite field, has

expected running time ()2
hTEO = . Most of the

operations are spent for updating inverse vectors and they

occupy multiplication of: |E| (iterate over all edges), |T| (at

the most |T| flows), h (h is number of inverse vectors for

every flow) and h (vector dimension = inner product

complexity). Failure probability is |F|/|T| (here is used field

size of TF 2≥). Deterministic algorithm is based on

this reason: if there is n≤|F| pairs of non normal vectors

135

(bi,ai) (i.e. biai≠0) then there exists linear combination u of

b1...bn such that uai≠0 (linear combination isn't normal to

any ai). Algorithm steps are: u1=b1, 1≤i<n if uiai+1≠0 then

ui+1=ui else ui+1=αui+bi+1 where α is from finite field except

set{αk | αk = -(bi+1ak)/(uiak) 1≤k≤i}, it has running time

O(|T|
2
h) (at most |T| pairs, h for calculating α and size of

admissible α is at most |T|) Deterministic running time is

()() ()()ThhTEOhThTEO +=+
22

 and required

field size is any TF ≥ For the source code see [12].

Each sink can reconstruct all h input symbols in ()2hO .

C. Python implementation

Algorithm realization is done with Python interpreter

language, which is the most suitable language for such

testing. Whole implementation could be written on one

page as it is in this work in APPENDIX. That Python code

with detailed installation instructions and examples can be

found at [12]. Program imports several modules:

NetworkX for graph operations, Numpy for vector

operations, Pydot for drawing graphs and ffield for finite

field operations.

Program input is directed acyclic, multigraph (V,E).

Multigraph can be defined in txt file dot format (edges and

capacity) or chosen randomly. If there is non unit integer

capacity between nodes example: c=3, it is replaced with c

multi edges with unit capacity.

Source node is node without any input edges (if graph

doesn't contain only one such node, program exits) and

sinks are nodes without output edges.

Next step is to mark all flows to all sinks (example: for

sink T0, there are three flows (T0,0), (T0,1), (T0,2)).

Mincut h is min of number of flows to each sink.

Remaining flows above first h are discarded and edges

without flows are also discarded. Then, program inserts

new h pseudo edges from pseudo node 's' to the source,

with vectors (1,0,0,0,...), (0,1,0,0,0,...) ... (0,0,....0,1) (h

vectors) respectively, and mark them as current edges for

h flow, for all sinks. Initially perpendiculars are the same

as vectors because it holds (see equation (3)).

IBA

hxhhxh

tt =





































=⋅

1000

0.........

0...10

001

1000

0.........

0...10

001

Nodes are processed in topological order (it means that

all input edges were processed before node is processing).

When an edge e is processing, first are determined all

vectors and perpendiculars on input edges having the same

flows as e has (see Fig. 1). Note those vectors as

temp_vectors and temp_perpendiculars, respectively.

Label lin_comb is linear combination of vectors from

temp_vectors with coefficients from finite field. field size

is of form 2
m
 and at least double of number of sinks.

Scalar product (label multiplication) of vectors in

temp_perpendiculars and lin_comb must be non zero. This

ensure that new vector lin_comb have component at

perpendicular on Bt without vector which lin_comb is

replacing. Rest of algorithm is updating current_edges,

vectors and perpendiculars. At the end, picture of the

graph with edge flows and vectors, is created.

D. Testing

This program gives us ability to find centralized network

code solution to any multicast session. Fig. 2 presents a

solution of butterfly problem with double edges (mincut is

therefore 4). In Fig. 3 is presented deterministic solution

for random generated network (see [12] for details of

generation steps). (h is 5, sinks are {8, 9}, field size is 2)

Fig. 2 Butterfly network with double capacity edges

Fig. 3 Random network with 10 nodes

III. CONCLUSION

This work shows simplicity of modern algorithms in

network coding [10] and attracts young scholars to involve

in this new exciting mixture field of information coding,

graphs theory, routing etc.

bi

ai

136

APPENDIX

Source code for randomized algorithm:
import ffield #www.mit.edu/~emin/source_code/py_ecc/ffield.py

import numpy #download from http://numpy.scipy.org/

import networkx # http://pypi.python.org/pypi/networkx/

import math

import random

import pydot #http://code.google.com/p/pydot/

picture = pydot.Dot()

graph = networkx.read_dot('dot.txt')

graph.ban_selfloops()

for h,t,c in graph.edges()[:] :

 if c!={} and c != None:

 capacity = int(c.pop('c'))

 if capacity > 1:

 for x in range(capacity-1):

 graph.add_edge(h,t,{})

 elif capacity ==0:

 graph.delete_edge(h,t,c)

if graph.in_degree().count(0) > 1:

 exit("ERROR: The Graph has more than one vertice with no input edges (the problem is

more than one sources)!")

elif graph.in_degree().count(0) < 1:

 exit("ERROR: The Graph doesn't have any vertice with no input edges (the problem is that

there is no source)!")

source=graph.nodes()[graph.in_degree().index(0)]

sinks=[graph.nodes()[i] for i,x in enumerate(graph.out_degree()) if x==0]

new_graph = networkx.XDiGraph(multiedges=True)

flows=dict(zip(sinks,[list() for dump in range(len(sinks))]))

for sink in sinks:

 temp_graph=graph.copy()

 flow = networkx.path.shortest_path(temp_graph,source,sink)

 flow_number=-1

 while flow:

 flows[sink].append(flow)

 flow_number +=1

 temp_graph.delete_edges_from(zip(flow[:-1],flow[1:],[{}]*(len(flow)-1)))

 for h,t in zip(flow[:-1],flow[1:]):

 if new_graph.has_edge(h,t):

 for temp in new_graph.get_edge(h,t):

 if set([x for x,dump in temp]).intersection([sink]) == set([]):

 temp.add((sink,flow_number))

 break

 else:

 new_graph.add_edge(h,t,set([(sink,flow_number)]))

 else:

 new_graph.add_edge(h,t,set([(sink,flow_number)]))

 flow = networkx.path.shortest_path(temp_graph,source,sink)

mincut=min([len(x) for x in flows.values()])

for sink in sinks:

 while len(flows[sink]) > mincut:

 flow_number= len(flows[sink]) -1

 flow = flows[sink].pop()

 for h,t in zip(flow[:-1],flow[1:]):

 for temp in new_graph.get_edge(h,t):

 if temp.intersection(set([(sink,flow_number)])) != set([]):

 temp.discard((sink,flow_number))

 if len(temp) == 0:

 new_graph.delete_edge(h,t,set())

 break

graph=new_graph

field=ffield.FField(int(math.ceil(math.log(len(sinks),2))))

vectors=dict(zip([x for x in sinks],[[numpy.array([ffield.FElement(field,0)]*i+

[ffield.FElement(field,1)]+[ffield.FElement(field,0)]*(mincut-i-1)) for i in range(mincut)] for dump

in range(len(sinks))]))

for i in range(mincut):

 graph.add_edge('s',source,set([(t,i) for t in sinks]))

 picture.add_edge(pydot.Edge('s',str(source),label="b=["+'0'*i+'1'+'0'*(mincut-i-1)+"]"))

current_edges = dict(zip(sinks,[[('s',source)]*mincut for dump in range(len(sinks))]))

perpendiculars=dict(zip([x for x in sinks], [[numpy.array([ffield.FElement(field,0)]*i+

[ffield.FElement(field,1)]+[ffield.FElement(field,0)]*(mincut-i-1)) for i in range(mincut)] for dump

in range(len(sinks))]))

for vertice in networkx.topological_sort(graph)[1:-len(sinks)]:

 label_vertice=""

 for edge in graph.out_edges_iter(vertice):

 temp_perpendiculars = []

 index_temp_perpendiculars = []

 temp_vectors = []

 temp_orders = []

 for edge_order,input_edge in enumerate(graph.in_edges(vertice)):

 same_flows = set.intersection(input_edge[2],edge[2])

 if same_flows:

 for t,i in same_flows :

 temp_perpendiculars.append(perpendiculars[t][i])

 index_temp_perpendiculars.append((t,i))

 temp_vectors.append(vectors[t][i])

 temp_orders.append(edge_order)

 got_linear_combination = False

 while not got_linear_combination:

 lin_comb = numpy.array([ffield.FElement(field,0)]*mincut)

 random_vector = [ffield.FElement(field,random.randint(0,pow(2,field.n)-1)) for dump

in range(len(temp_orders))]

 for v in [x*y for x,y in zip(temp_vectors, random_vector)]:

 lin_comb += v

 multiplication = temp_perpendiculars * lin_comb

 for i in multiplication:

 if i.sum().f == 0:

 print "random_vector", random_vector,"lin_comb", lin_comb," have sum=0"

 break

 else:

 print "global vector on edge",edge[0],'-',edge[1],"is",lin_comb

 got_linear_combination = True

 for t,i in edge[2]:

 vectors[t][i]=lin_comb

 current_edges[t][i] = (vertice,edge[1])

 index=index_temp_perpendiculars.index((t,i))

 perpendiculars[t][i] = temp_perpendiculars[index] *

ffield.FElement(field,field.Inverse((temp_perpendiculars[index]*lin_comb).sum().f))

 for x,temp in enumerate(perpendiculars[t][:]):

 if x==i:

 continue

 temp += perpendiculars[t][i] * (lin_comb*temp).sum()

 label=""

 lin_comb_coef=zip(temp_orders, random_vector)

 lin_comb_coef.append(('x',0))

 lin_comb_coef.reverse()

 position,coeficient = lin_comb_coef.pop()

 for i in range(graph.in_degree(vertice)):

 if position==i:

 label+=str(coeficient.f)+"|"

 position,coeficient = lin_comb_coef.pop()

 else:

 label+="0|"

 label="{"+label[:-1]+"}"

 label_vertice +=label + "|"

 picture.add_edge(pydot.Edge(src=str(vertice),dst=str(edge[1]),label="b="+str([x.f

for x in lin_comb]) + "\\nT="+ str(edge[2])[3:-1]))

 if label_vertice != '':

 picture.add_node(pydot.Node(str(vertice),label=label_vertice[:-1],shape='record'))

picture.write_jpg('dot.jpg')

REFERENCES

[1] Yeung, Li, Cai, Zhang “Network Coding Theory” Foundations and

Trends® in Communications and Information Theory: now

Publishers Inc, 2005.

[2] Tracey Ho, Desmond S. Lun “Network Coding: An introduction”

Cambridge University Press, 2008.

[3] Baochun Lin, Microsoft research speaker at ResearchChannel.org

http://www.researchchannel.org/prog/displayevent.aspx?rID=6940

&fID=345 2006.

[4] K. Jain, M. Mahdian and M.R. Salavatipour “Packing Strainer

Trees” in Proc. 14th ACM-SIAM Symposium on Discrete

Algorithms (SODA) Baltimore, MD, Jan 2003.

[5] Ahlswede, Cai, Li, Yeung,”Network information flow” IEEE

Trans. Inf. Theory, vol. 46, no. 4, pp. 1204-1216, Jul 2000.

[6] Li, Yeung, Chai, “Linear network coding”, IEEE Trans. Inf.

Theory, vol. 49, no. 2, pp. 371-381, Feb. 2003.

[7] A. Rasala-Lehman and E. Lehman “Complexity classification of

network information flow problems”, SODA ’04: Proc: 15th Annu.

ACM-SIAM Symp. Discrete algorithms, New Orleans, LA 2004

pp. 142-150.

[8] R. Koetter, M. Medard, “An algebraic approach to network

coding”, IEEE/ACM Trans. Netw. Vol.11, no. 5, pp. 782-795, Oct.

2003.

[9] T. Ho, R.Koetter, M. Medard, D. Karger, M. Effros “The benefits

of coding over routing in a randomized setting” in Proc. IEEE Int.

Symp. Inf. Theory ISIT, Yokohama, Japan, Jun 2003, p.442

[10] S. Jaggi, P. Sanders, P.A. Chou, M. Effros, S. Egner, K. Jain,

L.M.G.M Tolhuizen “Polinomial time algorithms for multicast

network code construction” IEEE Trans. Inform. Theory, vol. 51,

no. 6, pp. 1973-1982, Juna 2005.

[11] W.H. Press, S.A. Teukolsky, W. T. Vetterling, B.P. Flannery

“Numerical Recipes in C, 2nd” Cambridge, U.K. 1992, section.2.7.

[12] http://sites.google.com/site/duleorlovic/solutions/implementation-

of-polynomial-time-algorithms-for-network-coding.

137

